2,201 research outputs found

    Effect of Hole Doping on the Electronic Structure of Tl2201

    Full text link
    We discuss doping dependencies of the electronic structure and Fermi surface of the monolayer Tl2−x_{2-x}Cux_xBa2_2CuO6+ή_{6+\delta} (Tl2201). The TlO bands are found to be particularly sensitive to doping in that these bands rapidly move to higher energies as holes are added into the system. Such doping effects beyond the rigid band picture should be taken into account in analyzing and modeling the electronic spectra of the cuprates.Comment: 2 pages, Submitted to Physica C / Proceedings of the M2S-HTSC-VIII Conferenc

    Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors.

    Get PDF
    'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management

    Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates

    Full text link
    The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping from a pseudogap state in the underdoped cuprates to a superconducting state at optimal and overdoping, has been interpreted as evidence that the pseudogap must be due to precursor pairing. We suggest an alternative explanation, that the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the pseudogap could actually be due to any of a number of nesting instabilities, including charge or spin density waves or more exotic phases. We present a detailed analysis of this competition for one particular model: the pinned Balseiro-Falicov model of competing charge density wave and (s-wave) superconductivity. We show that most of the anomalous features of both tunneling and photoemission follow naturally from the model, including the smooth crossover, the general shape of the pseudogap phase diagram, the shrinking Fermi surface of the pseudogap phase, and the asymmetry of the tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1 and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be described in detail by this model, but we suggest a simple generalization to account for inhomogeneity, which does provide an adequate description. We show that it should be possible, with a combination of photoemission and tunneling, to demonstrate the extent of pinning of the Fermi level to the Van Hove singularity. A preliminary analysis of the data suggests pinning in the underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure

    On the Lower Bound for the Higgs Boson Mass

    Get PDF
    We provide an alternative derivation of a lower bound on the mass of the Higgs boson which is somewhat simpler and more direct than the derivation based on the effective potential. For one TeV cutoff, the result is the same. For high scale cutoff, the lower bound is increased by slightly more than the expected uncertainty of the calculation.Comment: 7 pages, LaTe

    Influence of simultaneous doping of Sb & Pb on phase formation, superconducting and microstructural characteristics of HgBa2Ca2Cu3O8+\delta

    Full text link
    We report systematic studies of structural, microstructural and transport properties of (Hg_0.80 Sb_0.2-x Pb_x)Ba_2 Ca_2 Cu_3O_8+\delta (where x = 0.0, 0.05, 0.1, 0.15, 0.2) compounds. Bulk polycrystalline samples have been prepared by two-step solid-state reaction route at ambient pressure. It has been observed that simultaneous substitution of Sb and Pb at Hg site in oxygen deficient HgO_\delta layer of HgBa2Ca2Cu3O8+\delta cuprate high-Tc superconductor leads to the formation of Hg-1223 as the dominant phase. Microstructural investigations of the as grown samples employing scanning electron microscopy reveal single crystal like large grains embodying spiral like features. Superconducting properties particularly transport current density (Jct) have been found to be sensitive to these microstructural features. As for example (Hg0.80Sb0.05Pb0.15)Ba2Ca2Cu3O8+\delta compound which exhibits single crystal like large grains (~ 50 micrometer) and appears to result through spiral growth mechanism, shows highest Jct (~ 1.85 x 103 A/cm2) at 77K. A possible mechanism for the generation of spiral like features and correlation between microstructural features and superconducting properties have been put forward.Comment: 16 pages, 6 figures. Accepted in Physica

    Superconducting and pseudogap phases from scaling near a Van Hove singularity

    Get PDF
    We study the quantum corrections to the Fermi energy of a two-dimensional electron system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization of the leading logarithm near the divergent density of states. A phase of d-wave superconductivity arises beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower doping levels, the condensation of particle-hole pairs due to the nesting of the saddle points takes over, leading to the opening of a gap for quasiparticles in the neighborhood of the singular points.Comment: 4 pages, 6 Postscript figures, the physical discussion of the results has been clarifie

    Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction

    Get PDF
    The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {\eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure

    Charmonium - Pion Cross Section from QCD Sum Rules

    Get PDF
    The J/ψπ→DˉD∗,DˉDJ/\psi \pi\to \bar{D} D^*, \bar{D} D, Dˉ∗D∗{\bar D}^* D^* and DˉD∗{\bar D} D^* cross sections as a function of s\sqrt{s} are evaluated in a QCD sum rule calculation. We study the Borel sum rule for the four point function involving pseudoscalar and vector meson currents, up to dimension four in the operator product expansion. We find that our results are smaller than the J/ψπ→charmedmesonsJ/\psi \pi\to {charmed mesons} cross sections obtained with models based on meson exchange, but are close to those obtained with quark exchange models.Comment: revised version accepted for publication in Phys. Lett.

    Social Cohesion, Structural Holes, and a Tale of Two Measures

    Get PDF
    EMBARGOED - author can archive pre-print or post-print on any open access repository after 12 months from publication. Publication date is May 2013 so embargoed until May 2014.This is an author’s accepted manuscript (deposited at arXiv arXiv:1211.0719v2 [physics.soc-ph] ), which was subsequently published in Journal of Statistical Physics May 2013, Volume 151, Issue 3-4, pp 745-764. The final publication is available at link.springer.com http://link.springer.com/article/10.1007/s10955-013-0722-

    The Sub-Surface Structure of a Large Sample of Active Regions

    Full text link
    We employ ring-diagram analysis to study the sub-surface thermal structure of active regions. We present results using a large number of active regions over the course of Solar Cycle 23. We present both traditional inversions of ring-diagram frequency differences, with a total sample size of 264, and a statistical study using Principal Component Analysis. We confirm earlier results on smaller samples that sound speed and adiabatic index are changed below regions of strong magnetic field. We find that sound speed is decreased in the region between approximately r=0.99R_sun and r=0.995R_sun (depths of 3Mm to 7Mm), and increased in the region between r=0.97R_sun and r=0.985R_sun (depths of 11Mm to 21Mm). The adiabatic index is enhanced in the same deeper layers that sound-speed enhancement is seen. A weak decrease in adiabatic index is seen in the shallower layers in many active regions. We find that the magnitudes of these perturbations depend on the strength of the surface magnetic field, but we find a great deal of scatter in this relation, implying other factors may be relevant.Comment: 16 pages, 11 figures, accepted for publication in Solar Physic
    • 

    corecore